Dasar – Dasar Pengetahuan MRI
1. Konsep Dasar Inti Atom Hidrogen
Pada dasarnya setiap materi dengan jumlah proton dan netron ganjil akan mempunyai nilai momen magnetik yang dikenal dengan MR nuklei sedangkan inti yang mempunyai jumlah proton dan netron genap akan mempunyai momen magnetik yang bernilai nol. Atom hidrogen terdapat dalam tubuh dalam jumlah yang melimpah, kurang lebih 80% penyusun tubuh manusia adalah atom hidrogen. Setiap atom hidrogen mempunyai satu inti bermuatan tunggal yang mempunyai nilai magnetisasi. Oleh karena itu maka inti atom hidrogen mempunyai peranan yang sangat besar pada MRI (Westbrook dan kuat, 1999).
2. Presesi dan Frekuensi Larmor Jaringan
Di dalam medan magnet eksternal inti atom akan mengalami gerakan perputaran menyerupai gerakan sebuah gasing. Gasing berputar di atas sumbu bidang vertikal yang bergerak membuat bentuk seperti sebuah kerucut. Gerakan ini disebut dengan presesi. Frekuensi presesi ini besarnya sebanding dengan kekuatan medan magnet eksternal dan nilai gyromagnetic inti atom. Apabila atom dengan frekuensi gyromagnetic yang berbeda berada dalam suatu medan magnet eksternal yang sama maka masing-masing atom mempunyai frekuensi presesi yang berbeda. Sebaliknya walaupun atomnya sama (misalnya atom hidrogen), namun bila diletakkan dalam medan magnet eksternal dengan kekuatan yang berbeda maka akan menghasilkan frekuensi presesi yang berbeda pula. Inti atom hidrogen mempunyai frekuensi presesi 42,6 MHz/ Tesla. Frekuensi presesi ini disebut juga dengan frekuensi Larmor jaringan.
Tiap-tiap inti hidrogen membentuk NMV spin pada sumbu atau porosnya. Pengaruh dari Bo akan menghasilkan spin sekunder atau ”gerakan” NMV mengelilingi Bo. Spin sekunder ini disebut precession, dan menyebabkan momen magnetik bergerak secara sirkuler mengelilingi Bo. Jalur sirkulasi pergerakan itu disebut ”precessional path” dan kecepatan gerakan NMV mengelilingi Bo disebut ”frekuensi presesi” . Satuan frekuensinya MHz, dimana 1 Hz = 1 putaran per detik.
Kecepatan atau frekuensi presesi proton atom hidrogen tergantung pada kuat medan magnet yang diberikan pada jaringan. Semakin kuat medan semakin cepat presesi proton dan frekuensi presesi yang tergantung pada kuat medan magnet disebut dengan frekuensi Larmor yang mengikuti persamaan :
ω = γ B
dimana:
ω adalah frekuensi Larmor proton,
γ adalah properti inti gyromagnetik, dan
B adalah medan magnet eksternal (Westbrook,C, dan Kaut,C, 1999).
Gambar 5 : Presesi (Westbrook,C, dan Kaut,C, 1999).
1. Resonansi
Resonansi adalah peristiwa bergetarnya suatu materi akibat getaran materi lain yang mempunyai frekuensi yang sama. Dalam MRI resonansi merupakan peristiwa perpindahan energi dari pulsa RF ke proton hidrogen karena kesamaan frekuensi. Karena adanya penyerapan energi dari RF inilah pada dasarnya yang mengakibatkan terjadinya magnetisasi transversal sehingga magnetisasi yang diakibatkan oleh pembangkit magnet eksternal dapat diukur berupa pulsa signal MRI. Signal MRI dikenal dengan FID (free induction decay).
Resonansi terjadi bila atom hidrogen dikenai pulsa radiofrekuensi (RF) yang memiliki frekuensi yang sama dengan frekuensi Larmor atom hidrogen tersebut. Normalnya tubuh manusia mempunyai muatan magnet yang arahnya acak sehingga Net Magnetization Vektor (NMV) nilainya nol, Apabila tubuh manusia dimasukkan dalam medan magnet eksternal yang sangat kuat sebagaimana pada pemeriksaan MRI, maka akan terjadi magnetisasi longitudinal pada inti-inti atom hidrogen. Magnetisasi longitudinal ini sangat kecil bila dibandingkan dengan kuat medan magnet eksternal dari pesawat MRI dan oleh karenanya belum dapat diukur. Untuk dapat mengetahui besarnya magnetisasi inti-inti atom Hidrogen maka inti-inti atom Hidrogen harus mempunyai magnetisasi yang arahnya berbeda dengan medan magnet eksternal. Resonansi pulsa RF mengakibatkan terjadinya magnetisasi transversal yang secara vektor mempunyai arah berbeda dengan medan magnet eksternal sehinga memungkinkan dilakukannya pengukuran NMV.
Untuk dapat terjadi proses resonansi maka besarnya frekuensi RF harus disesuaikan dengan kekuatan medan magnet eksternal dan frekuensi Larmor jaringan. Agar resonansi terjadi pada atom hidrogen pada medan magnet eksternal dengan kekuatan 1 Tesla (10.000 Gauss), maka frekuensi RF yang diberikan adalah 42.6 MHz sedang untuk medan magnet eksternal dengan kekuatan 1.5 Tesla diperlukan 63.2 MHz. Hasil dari peristiwa resonansi adalah adanya perubahan arah NMV pada magnetisasi longitudinal ke arah magnetisasi transversal dan magnetik moment menjadi dalam keadaan in phase. Peristiwa resonansi ini pada dasarnya adalah suatu transfer energi dari gelombang RF ke inti atom Hidrogen yang mengalami magnetisasi oleh pembangkit magnet eksternal.
2. Signal MRI
Pada saat terjadi magnetisasi transversal maka terjadi pula keadaan in phase pada bidang transversal sehingga akan terjadi induksi dari medan magnet terhadap koil penerima yang akan tercatat sebagai sinyal. Kuat dan lemahnya magnetisasi pada bidang transversal ini akan berpengaruh pada kekuatan signal MRI dan berpengaruh pada intensitas gelap dan terang pada citra MRI. Bila signal MRI kuat maka akan memberikan gambaran citra yang terang atau hiperintens, sedangkan apabila signal MRI lemah akan memberikan citra MRI gelap atau hipointens.
Bila pulsa RF dihentikan, magnetik moment pada bidang transversal yang dalam keadaan in phase akan mengalami dephase kembali sehingga magnetisasi pada bidang transversal akan menurun, akibatnya induksi pada koil penerima juga akan semakin melemah yang dikenal dengan sinyal Free Induction Decay (FID).
3. Fenomena T1 dan T2
Setelah RF diberikan dan terjadi peristiwa resonansi maka pulsa lalu dihentikan (off) maka NMV kehilangan energi yang dikenal dengan relaksasi. Ada dua fenomena yang terjadi pada peristiwa relaksasi, yaitu jumlah magnetisasi pada bidang longitudinal meningkat kembali atau recovery dan pada saat yang sama jumlah magnetisasi pada bidang transversal akan meluruh yang dikenal dengan decay.
Recovery magnetisasi longitudinal disebabkan oleh suatu proses yang disebut dengan T1 recovery, dan decay pada magnetisasi transversal disebabkan suatu proses yang disebut dengan T2 decay. T1 recovery disebabkan oleh karena nuklei memberikan energinya pada lingkungan sekitarnya atau lattice, sehingga disebut juga dengan Spin-Lattice Relaxation. Energi yang dibebaskan ke lingkungan sekitar akan menyebabkan magnetisasi bidang longitudinal akan semakin lama semakin menguat dengan waktu recovery yang disebut waktu relaksasi T1. T1 didefinisikan sebagai waktu yang diperlukan suatu jaringan untuk mencapai pemulihan magnetisasi longitudinal hingga mencapai 63% dari nilai awalnya.
Sebagai contoh adalah lemak dan cairan cerebrospinal. Lemak memiliki waktu relaksasi T1 yang pendek sekitar 180 ms sedangkan cairan cerebrospinal memiliki waktu relaksasi T1 cukup panjang berkisar 2000 ms. Sehingga waktu relaksasi T1 lemak lebih cepat dibandingkan dengan waktu relaksasi cairan cerebrospinal. Dengan demikian untuk pembobotan T1, jaringan dengan waktu relaksasi T1 pendek (lemak) akan tampak terang (hiperintens) dan jaringan dengan waktu relaksasi T1 panjang (cairan cerebrospinal) akan tampak lebih gelap (hipo-intens).
Relaksasi T2 disebabkan oleh adanya pertukaran energi antara inti atom hidrogen dengan inti atom di sekitarnya. Pertukaran energi antar nuklei ini dikenal dengan Spin-Spin Relaxation dan akan menghasilkan decay pada magnetisasi transversal. Waktu yang diperlukan suatu jaringan untuk kehilangan energinya hingga 37% dikenal dengan waktu relaksasi T2 (Snopek, 1992). Waktu relaksasi T2 akan lebih pendek dari pada waktu relaksasi T1. Pada pembobotan T2 dengan waktu relaksasi T2 panjang (seperti cairan cerebrospinal sekitar 300 ms) akan tampak terang (hiperintens) dan jaringan dengan waktu relaksasi T2 pendek (seperti lemak sekitar 90 ms) akan tampak lebih gelap (hipo-intens) .
Komponen Sistem MRI
Komputer pada MRI merupakan otak dan komponen utama yang digunakan untuk memproses sinyal, menyimpan data dan menampilkan gambar yang dihasilkan. Selain sistem komputer komponen utama pada pesawat MRI adalah: pembangkit magnet utama, koil gradien, koil penyelaras (shim’s coils), antena atau koil pemancar dan penerima, serta sistem akuisisi data dalam komputer.
1. Magnet Utama
Untuk keperluan diagnosa klinis diperlukan magnet utama yang memproduksi kuat medan magnet besar antara 0.1 – 3.0 Tesla (Bontrager, 2001). Pembangkitan medan magnet untuk MRI menggunakan salah satu dari beberapa tipe magnet, yaitu magnet permanen, magnet resistif dan magnet superkonduktor.
2. Shims Coils
Untuk menjaga kestabilan, keseragaman atau homogenitas medan magnet utama maka dipasang koil elektromagnetik tambahan yang disebut dengan shim coil. Inhomogenitas magnet diharapkan tidak melebihi 10 ppm (Westbrook,C, dan Kaut,C, 1999).
3. Gradien Coils
Terdapat tiga buah koil gradien yang merupakan penghasil gradien magnet yaitu gradien x, y dan z masing-masing mengarahkan medan magnet pada sumbu x, y dan z. Ketiganya dapat dioperasikan sesuai dengan kebutuhan arah irisan pada tubuh yang diperiksa.
4. Antena
Koil radiofrekuensi (RF) terdiri dari dua tipe koil yaitu koil pemancar (transmitter) dan koil penerima (receiver). Fungsinya lebih mirip sebagai antena. Koil pemancar berfungsi untuk memancarkan gelombang RF pada inti yang terlokalisir dengan frekuensi tertentu sehingga terjadi proses resonansi, sedangkan koil penerima berfungsi untuk menerima sinyal output dari sistem. Bentuk dan ukuran koil penerima ini telah dirancang disesuaikan dengan bagian tubuh yang akan diperiksa, misalnya koil untuk kepala, vertebra atau ekstremitas. Jenisnya ada 3 yaitu koil volume, koil surface dan koil phased array.
Pulsa Sekuen dan Spin Echo
Spin Echo adalah sekuens yang diperoleh dengan menggunakan aplikasi pulsa RF 90 diikuti dengan aplikasi pulsa RF 180 untuk rephase agar sinyal dapat dicatat dalam masing masing K-space agar diperoleh citra MRI. Pulsa sekuens Spin Echo paling banyak digunakan pada pemeriksaan MRI (Bushong, 1996). Diagram Pulsa sekuens Spin Echo secara sederhana dapat dilihat pada gambar di bawah ini. Komponen utama dari pulsa sekuens tersebut adalah Time Repetition (TR) dan Time Echo (TE).
Gambar 6 : Spin Echo sekuens (Westbrook,C, dan Kaut,C, 1999).
TR adalah waktu pengulangan aplikasi pulsa RF 90 terhadap aplikasi pulsa RF 90 berikutnya, dengan satuan millisecon (ms). TR akan menentukan waktu relaksasi T1 yang akan terjadi. TR yang digunakan dalam MRI bisa dipilih oleh radiografer mulai berkisar 200 ms hingga lebih dari 2000 ms tergantung pada teknik pembobotan yang dipilih. TE adalah waktu antara eksitasi pulsa dengan echo yang terjadi. Echo dihasilkan dari aplikasi pulsa RF 90 sampai dengan sinyal terkuat dari aplikasi rephase pulsa RF 180 saat menginduksi koil. Waktu TE dapat diubah tergantung pembobotan citra yang dikehendaki. Waktu TE berkisar antara 10 ms hingga lebih dari 80 ms.
Kontras Citra SE
Kontras citra pada MRI dibentuk oleh perbedaan gelap dan terang yang diakibatkan karena perbedaan kuat signal MRI. Signal MRI yang kuat akan mengakibatkan bayangan terang atau dikatakan hiperintens, sedangkan signal MRI yang lemah akan menyebabkan bayangan yang gelap atau hipointens. Suatu daerah yang diperiksa bisa menjadi hiperintens atau hipointens tergantung pada pembobotan citra yang dipilih. Secara umum ada tiga pembobotan citra yaitu: T1-Weighted Image, T2-Weighted Image, dan proton density.
1. Kontras Citra T1 -Weighted Image
Pada pembobotan T1 WI diberikan TR yang cukup pendek sehingga baik jaringan lemak maupun air tidak cukup waktu untuk dapat kembali recovery pada nilai magnetisasi awal (B0), dengan demikian terjadi perbedaan yang cukup besar pada signal MR dari air dan lemak. Pada T1WI air mempunyai signal yang lemah sehingga memiliki gambaran yang kurang terang, gelap atau hipointens, sedangkan lemak mempunyai signal yang lebih kuat sehingga memiliki gambaran yang lebih terang atau hiperintens.
Waktu relaksasi T1 lemak lebih pendek (180 ms) dari pada waktu relaksasi T1 air (2500 ms), maka recovery lemak akan lebih cepat dari pada air sehingga komponen magnetisasi lemak pada bidang longitudinal lebih besar dari pada magnetisasi longitudinal pada air. Dengan demikian lemak memiliki intensitas sinyal yang lebih tinggi dan tampak terang pada kontras citra T1. Sebaliknya air akan tampak dengan intensitas sinyal yang rendah dan tampak gelap pada kontras citra T1. Citra yang demikian itu (lemak tampak terang dan air tampak gelap) dalam MRI dikenal dengan T1-Weighted Image (T1 WI). Jadi untuk menghasilkan kontras citra T1 WI, dipilih parameter waktu TR yang pendek (berkisar antara 300-600 ms) dan waktu TE yang pendek (berkisar antara 10 -20 ms).
2. Kontras Citra T2-Weighted Image
Pada pembobotan T2WI air mempunyai signal yang lebih kuat sehingga memiliki gambaran lebih terang atau hiperintens sedangkan lemak mempunyai signal yang lebih lemah sehingga memiliki gambaran yang lebih kurang terang, gelap atau hipointens. Hal ini disebabkan pada pembobotan T2 WI diatur TE yang cukup panjang sehingga baik air maupun lemak cukup waktu untuk mengalami decay dan mengakibatkan terjadinya perbedaan signal yang cukup besar.
Karena waktu relaksasi T2 lemak (90 ms) lebih pendek dari pada air (2500 ms), maka komponen magnetisasi transversal lemak akan decay lebih cepat dari pada air sehingga akan menghasilkan intensitas sinyal yang kuat dan akan tampak terang pada kontras citra T2. Sebaliknya magnetisasi transversal pada lemak lebih kecil dan menghasilkan citra intensitas rendah dan tampak gelap pada kontras citra T2. Citra yang demikian itu (lemak tampak gelap dan air tampak terang) dalam MRI dikenal dengan T2-Weighted Image (T2 WI). Jadi untuk menghasilkan kontras citra T2 WI, dipilih waktu TR yang panjang (800 ms hingga 2000 ms atau lebih) dan waktu TE yang panjang (lebih dari 80 ms).
3. Kontras Citra Proton Density-Weighted Image
Apabila diberikan TR cukup panjang maka baik air maupun lemak akan sama-sama mempunyai cukup waktu untuk mengalami recovery menuju magnetisasi longitudinal awal sehingga menghilangkan gambaran pembobotan T1. Apabila pada saat yang bersamaan juga diberikan TE yang sangat pendek maka tidak cukup waktu bagi air maupun lemak untuk terjadinya relaksasi transversal sehingga menghilangkan gambaran pembobotan T2. Dengan demikian apabila TR panjang dan TE pendek maka gambaran yang terjadi bukan T1 WI ataupun T2 WI. Gambaran yang terjadi semata mata diakibatkan oleh perbedaan densitas atau kerapatan proton, yaitu jumlah proton persatuan volume. Suatu area dengan kerapatan proton yang tinggi akan memberikan gambaran yang terang atau hiperintens sebaliknya suatu area dengan kerapatan proton yang rendah akan tampak gelap atau hipointens.
Gambaran Proton Density-Weighted Image (PDWI) bergantung dari banyak sedikitnya jumlah proton per unit volume. Kontras citra diperoleh berdasarkan perbedaan banyak sedikitnya proton pada masing-masing jaringan. Misalnya jaringan otak dengan proton yang tinggi akan menghasilkan komponen magnetisasi transversal besar dan tampak terang pada kontras citra PDWI. Sedangkan tulang memiliki proton yang rendah dan tampak gelap pada kontras citra PDWI. Untuk memilih kontras citra PDWI, diatur dengan waktu TR yang panjang dan waktu TE yang pendek.
Waktu Scanning
Waktu scanning pada sekuens Spin Echo dapat dihitung dengan rumus :
Waktu scanning SE = (TR) x (jumlah tahapan phase encode) x (NEX)
Dimana :
TR : Time Repetition dalam ms.
Jumlah phase encode : jumlah phase yang digunakan.
NEX : jumlah eksitasi pulsa.
Misalnya pencitraan dengan TR 550 ms, jumlah phase encode 256,
dan NEX 1 maka waktu scanning adalah 2 menit 35 detik.
Teknik DWI
Difusi adalah istilah yang dipergunakan untuk menggambarkan pergerakan molekul secara acak pada jaringan. Gerakan ini dibatasi oleh batas-batas seperti ligamen, membran dan makromolekul. Kadangkala terjadinya pembatasan difusi adalah secara langsung tergantung pada struktur jaringan. Pada stroke yang masih dini, yaitu segera setelah terjadinya iskemia tapi sebelum terjadinya infark atau kerusakan permanen pada jaringan otak, sel-sel membengkak dan menyerap air dari ruang extraseluler. Ketika sel-sel penuh oleh molekul air dan dibatasi oleh membran, maka difusi yang terjadi akan terbatas dan nilai rata-rata difusi pada jaringan tersebut akan berkurang.
Imejing dengan sekuen spin echo dapat memperlihatkan struktur dengan tanda-tanda difusi pada jaringan. Gambaran difusi dapat diperoleh dengan lebih efektif dengan mengkombinasikan dua pulsa gradien yang diaplikasikan setelah eksitasi. Pulsa gradien digunakan untuk saling mempengaruhi pada spin-spin yang tidak bergerak sementara spin-spin yang bergerak pada jaringan normal tidak dipengaruhi. Ini sebabnya mengapa pada gambaran difusi sinyal yang mengalami atenuasi terjadi pada jaringan normal dengan pergerakan difusi yang random dan jaringan normal akan tampak lebih gelap, dan sinyal yang intensitasnya tinggi terjadi pada jaringan dengan difusinya yang terbatas (restriksi) seperti yang tejadi pada stroke akut.
Banyaknya atenuasi tergantung pada amplitudo dan arah dari aplikasi gradien difusi. Pulsa gradient dapat diaplikasikan searah dengan sumbu X, Y, dan Z. Arah difusi pada sumbu X, Y, dan Z dikombinasikan untuk menghasilkan gambaran difusi weighted. Ketika gradien difusi hanya diaplikasikan sepanjang sumbu Y, atau pada arah sumbu X, perubahan sinyal yang terjadi hanya sedikit. Istilah isotropic difusion dipakai untuk menggambarkan bahwa gradien difusi diaplikasikan pada ketiga sumbu tersebut. Gradien difusi harus panjang dan kuat untuk dapat memperoleh citra dengan pembobotan difusi (difusion weighting). Sensitivitas dan intensitas sinyal difusi dikontrol oleh parameter ’b’. Nilai ’b’ menentukan atenuasi difusi dengan memodifikasi durasi dan amplitudo dari gradien difusi. Nilai ’b’ dapat dinyatakan dalam satuan s/ mm2. Rentang ‘b’ value adalah 500 s/mm2 sampai 1000 s/mm2 (Westbrook,C, dan Kaut,C, 1999). ‘b’ value dipengaruhi oleh kekuatan magnet gradien yang terdapat pada pesawat MRI itu sendiri.
Semakin tinggi ‘b’ value maka intensitas sinyal difusi dan sensitifitas difusi akan meningkat, intensitas sinyal difusi yang meningkat pada jaringan otak normal akan tampak lebih gelap pada citra otak yang ditampilkan. Sensitifitas difusi yang dimaksud disini adalah kemampuan difusi tersebut untuk mendeteksi adanya difusi yang terbatas pada jaringan otak. Jika terdapat kelainan stroke maka jaringan otak yang difusinya terbatas akan menghasilkan intensitas sinyal yang terlihat terang dibandingkan jaringan yang normal (GE Signa Horizon DW-EPI Operator Manual, 1998).
Untuk pencitraan difusi jika menggunakan sekuen multi-shot maka perubahan phase akan berbeda untuk garis-garis yang berbeda pada K-space dan hal ini akan menghasilkan artefak yang terlihat sepanjang phase direction. Karena alasan ini maka citra MRI dengan pembobotan difusi pada umumnya diperoleh dengan teknik SE-EPI yang dilakukan dengan gradien yang kuat. Echo tambahan yang dikenal sebagai navigator echo dapat dihasilkan dan kemudian digunakan untuk mengkoreksi artefak selama post processing. Aplikasi klinis pencitraan difusi secara langsung adalah untuk mendiagnosa stroke. Lesi-lesi iskemik yang masih dini dapat diperlihatkan dengan pencitraan MRI difusi sebagai daerah dengan difusi air yang lebih lambat akibat akumulasi cairan atau akibat pengurangan ruang extra seluler. Pencitraan MR difusi dapat memperlihatkan lesi-lesi iskemik baik yang irreversible maupun yang reversible, sehingga potensial dapat membedakan jaringan otak yang masih dapat diperbaiki dengan jaringan yang mengalami kerusakan irreversible sebelum dilakukan tindakan therapy.
Gambar 7 : Jaringan dengan cairan yang berdifusi
normal (gambar kiri), dan jaringan yang
difusinya terbatas (gambar kanan)
(Westbrook,C, dan Kaut,C, 1999).
terima kasih untuk sharing materi MRInya mas, sangat membantu..
BalasHapussalam dari saya, Fisika Medis TN UGM '10
follow blog @tamanselatan.wordpress.com
terima kasih kak. sangat membantu memudahkan belajar MRI.
BalasHapus